芙蓉134 >地图 >教案 >

余弦定理教案

余弦定理教案

时间:2024-01-31 作者:芙蓉134

相关推荐

[精]余弦定理教案精选6篇。

我们为您精心挑选并整理了与“余弦定理教案”相关的文章。每个老师不可缺少的课件是教案课件,但老师也要清楚教案课件不是随便写写就行的。让优秀的教案为教师的授课注入新的灵感和力量。我们希望这篇文章能够帮助您更好地适应工作和生活中的变化!

余弦定理教案 篇1

余弦定理证明

在任意△ABC中, 作AD⊥BC.

∠C对边为c,∠B对边为b,∠A对边为a -->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

如右图,在ABC中,三内角A、B、C所对的.边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根据三角函数的定义知D点坐标是 (acos(π-C),asin(π-C)) 即 D点坐标是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可证 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可证 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:

mb=(1/2)[(√2(a^2+c^2)-b^2)]

mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

同理可得:

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

证毕。

余弦定理教案 篇2

教学目标:(1)掌握余弦定理,并能解决一些简单的度量问题.

(2)初步运用余弦定理解决一些与测量和几何计算有关的实际问题. (3)经历余弦定理的发现与验证过程,增强学生的理性思维能力. 教学重点:余弦定理的发现与运用. 教学难点:余弦定理的证明.

(2)课前,教者在黑板上画好如图所示的三个三角形.

情境1 A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条直的隧道的长度.另选一个点C,可以测得的数据有:AC?182m,BC?126m,?ACB?630,如何求A、B两地之间隧道的长度(精确到1m).

A

情境2 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)?

师:显然,这两个都是解三角形的问题.其中,情境1的实质是知道了三角形的两边与其夹角,求第三边的长度;而情境2的实质就是已知三角形的三条边,要求其一个内角的大小.

请问:(1)这两个问题能用正弦定理来解决吗? 生:不能.

师:对,在解法上是互逆的,所以本节课我们将要探究的核心问题是:在已知三角形两条边的前提下,其夹角的大小与第三条边的长度之间有着怎样的关系?这正是余弦定理所揭示的规律----引入课题.

问题1 在?ABC中,已知CB?a,CA?b(其中a?b),当?C从小到大变化时,AB的长度的变化趋势如何?

师:(学生思考了一会儿后)我们可以用一个简单的实验看一下. (课上,利用课前制作道具做一下演示实验.) 生: AB的长度随着?C的增大而增大.

师:这是一个定性的结论.那么对于定量的研究,一个常用的思维策略是特殊化. 取C=90?是最容易想到的;另外,虽然角C不能取0?与180?,但它可以无限接近这两个角,所以不妨再考察一下这两种情形.

续问: 若将?C的范围扩大到[00,1800],特别地:当?C?00,?C?900,?C?1800这三种特殊情形时,AB的长度分别是多少?

时,AB?a?b.

:

当?C?00时,AB?当?C?900时,AB?当?C?1800时,AB?B

A

问题2 请你根据上述三个特例的结果,试猜想:当?C??(00???1800)时,线段AB的长度是多少?

:AB?问题3 你能验证该猜想吗?请试一试.

(课上,利用课前画好的三张图进行讨论.先让学生独立思考一会儿,然后根据学生回答的情况进行讲解,至少讨论下列前两种方法.)

方法一:

证: (1)当?C??为锐角时,过点A作AD?BC于D.

则AB2?BD2?AD2?(a?bcos?)2?(bsin?)2=a2?b2?2abcos?.

(2)当?C??为直角时,结论显然成立.

(3)当?C??为钝角时, 过点A作AD?BC交BC的延长线于D. 则AB?BD?AD?(a?bcos(???))?(bsin(???))

?(a?bcos?)?(bsin?)=a?b?2abcos?.

综上所述,

均有AB?故猜想成立.

师:这种思路是构造直角三角形,利用勾股定理来计算AB的长,但要注意这里要分三种情况讨论.

方法二:

????2????2????????

?AC?CB?2AC?CB?a2?b2?2abcos(???)?a2?b2?2abcos?,

即AB?故猜想成立.

师:这种方法的思路是构造向量,借助向量的运算来证题.将向量等式转化数量等式常用的手段是作数量积.

方法三:

证:以C为坐标原点,CB所在直线为x轴,建立平面直角坐标系.

????

则B(a,0),A(bcos?,bsin?),则BA?(bcos??a,bsin?),所以

|AB|?(bcos??a)2?(bsin??0)2=a2?b2?2abcos?,

????

即AB?|AB|?故猜想成立.

师:这种思路是建立平面直角坐标系,借助于坐标运算来证题.利用坐标法的优点在于不必分类讨论了且运算简单.

当然,我们还可以从其它途径来验证这一猜想,这里就不再讨论了,有兴趣的同学课后我们可以作些交流.

问题4 在三角形中,如何用符号语言与文字语言表示出上述结论? (提示:根式的表示形式不如平方的形式来得美观.)

c2?a2?b2?2abcosC,

生:符号语言:在△ABC中,有a2?b2?c2?2bccosA,

b2?a2?c2?2accosB.

文字语言:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.

师:很好!这一结论我们称之为余弦定理,上述三个公式是余弦定理的一种表现形式. 问题5 如何根据三角形三条边的长度来求其内角的大小呢?

师:这是余弦定理的另一种表现形式.对于余弦定理的这两种形式,我们在解题中应该灵活地加以选用.

感悟:(1)在第一组式子中,当C=90°时,即有c2?a2?b2.所以,勾股定理是余弦定理 的特殊情形,余弦定理可以看做是勾股定理的推广.

(2)在第二组式子中,我们考察式子左右两边的符号,不难发现:

在△ABC中,C为锐角?a2?b2?c2;C为直角?a2?b2?c2;C为钝角?a2?b2?c2. 师:也就是说,在三角形中,要判断一个内角是什么角,只要看它的对边的平方与其它两边平方的和的.大小.

例1 在△ABC中,已知b=3,c=1,A=60°,求a.

解析:由余弦定理,得a2?b2?c2?2bccosA?32?12?2?3?1?cos600?7,

反思:(1)利用余弦定理,可以解决“已知两边和它们的夹角,求第三边和其他两个角”的问题.

(2)用余弦定理求边的长度时,切记最后的结果要开平方. 师: 情境1就是这种类型的问题,我们也不妨看一下解答.

情境1:A,B两地之间隔着一座小山,现要测量A、B之间即将修建的一条隧道的长度.另选一个点C,可以测得的数据有:AC=182m,BC=126m,∠ACB=63°,如何求A,B两地之间隧道的长度(精确到1m).

解析: 在?ABC中,因为AC?182m,BC?126m,?ACB?630,则由余弦定理,得

AB2?AC2?BC2?2AC?BCcos?ACB?1822?1262?2?182?126cos630 ?1822?1262?2?182?126?0.454?28177.15,

所以AB?168m.

答:A,B两地之间隧道的长度约为168m. 例2 在?ABC中,已知a=7,b=5,c=3,求A.

所以A=120°.

反思: (1)利用余弦定理,可以解决“已知三边,求三个角”的问题. 师:情境2就是这种类型的问题,我们不妨看一下解答.

情境2: 一位工人欲做一个三角形的支架.已知杆BC的长度为6分米,DAE是由一根直的钢管沿着点A弯折而成.若弯折点A与焊接点B,C的距离分别为4分米和5分米,欲弯折后杆BC恰好能与两焊接点相接,则弯折后∠BAC的大小是多少(精确到0.1度)?

解析:在?ABC中,因为c?4,b?5,a?6,则由余弦定理,得

cosA???0.125,,所以A?82.80;

反思:(2)利用余弦定理解决实际问题,解题的关键是建立出相应的三角形的模型.同时,要注意最后结果的精确度的要求.

变式:(1)在△ABC中,已知a2+b2+ab=c2,求角C的大小.

???,即cosC??, 解析:由a+b+ab=c,得a?b?c??ab,则

所以C?1200.

反思:(3)在解三角形时,由边的条件式求角时,别忘了余弦定理;同时要注重余弦定理的逆用.

变式:(2)若三条线段的长分别为5,6,7,则用这三条线段( ). A.能组成直角三角形 B.能组成锐角三角形

解析:首先因为两条小边之和大于第三边,所以能够组成三角形;接着,只要看最大的角是什么角.因为52?62?72,所以最大角为锐角,故这三条线段能组成锐角三角形.

思考:(1)若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围 是________.

(2)在?ABC中,已知a +c =2b,求证:B≤45°.

?x?11或1?x??x2?52?62?62?x2?52??

13c2?3a2?6ca3(c?a)2??0, ?=

数学知识----本节课新学的数学知识只有余弦定理.余弦定理与正弦定理是三角形中的两朵奇葩,从形式上看,两者都具有“美观”的外形,余弦定理虽有多个表达式,但它们之间具有可以轮换的对称美;从本质上看,两者都揭示了三角形中边与角之间“美妙”的内在联系.

在解三角形的问题中,“已知三个元素”包括了“三条边,两角一边,两边一角”这三种情况,前面学习的正弦定理能够解决已知“两角与任一边” 以及“两边与其中一边的对角”这两类问题;今天学习的余弦定理又能够解决已知“三边” 以及“两边及其夹角”的这两类问题.这样,对于一般的解三角形问题,我们就都能找到解决的办法了.当然,对于一些较为复杂的三角形问题,往往还要把这两个定理联合起来解决问题.

思维启迪----从本节课的讨论与研究中,我们获得了以下的一些思维启迪:

(1)本节课上,对于余弦定理的发现,我们是从三个特例开始的,这遵循了“从特殊到一般”的思维策略.

(2)在三个特例的基础上,我们进行了大胆的猜想,所以合理运用数学猜想等合情推理手段,是我们进行数学发现的一个重要途径.

(3)另外,在验证余弦定理时,我们运用到了几何、三角、向量等多个知识领域,所以我们要注重不同知识内容之间的融会贯通.

必做作业:教材第16页习题1.2第1,2,3,4题. 选做作业:教材第16页习题1.2第12题.

课后探究: (1) 思考:若用长为5,6,x的三条线段构成的三角形是钝角三角形,则正数x的取值范围是________.

(2)在?ABC中,已知a +c =2b,求证:B≤45°.

余弦定理教案 篇3

尊敬的评委老师们:

你们好,我今天说课的题目是余弦定理,(说教材) "余弦定理"是人教A版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".

这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。另外,本节与教材其他课文的共

性是都要掌握定理内容及证明方法,会解决相关的问题。

下面说一说我的教学思路。

(教学目的)

通过对教材的分析钻研制定了教学目的:

1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。

2.培养学生在方程思想指导下解三角形问题的运算能力。

3.培养学生合情推理探索数学规律的思维能力。

4.通过三角函数、余弦定理、向量的数量积等知识的联系,来理解事物普遍联系与

辩证统一。

(教学重点)

余弦定理揭示了任意三角形边角之间的客观规律,()是解三角形的重要工具。余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。本节课的重点内容是余弦定理的发现和证明过程及基本应用,其

中发现余弦定理的过程是检验和训练学生思维品质的重要素材。

(教学难点)

余弦定理是勾股定理的推广形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的发现和证明过程中,起到奠基作用,因此分析勾股定理的结构特征是突破发现余弦定理这个难点的关键。

(教学方法)

在确定教学方法之前,首先分析一下学生:我所教的是课改一年级的学生。他们的基础比正常高中的学生要差许多,拿其中一班学生来说:数学入学成绩及格的占50%

左右,相对来说教材难度较大,要求教师吃透教材,选择恰当的教学方法和教学手段把

知识传授给学生。

根据教材和学生实际,本节主要采用"启发式教学"、"讲授法"、"演示法",并采用电教手段使用多媒体辅助教学。

1.启发式教学:

利用一个工程问题创设情景,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。

2. 练习法:通过练习题的训练,让学生从多角度对所学定理进行认识,反复的练习,体现学生的主体作用。

3. 讲授法:充分发挥主导作用,引导学生学习。

4. 演示法:利用动画、图片,激发学生的学习兴趣,调动学生积极性。

这节课准备的器材有:计算机、大屏幕。

(教学程序)

1. 复习正弦定理(2分钟):安排一名同学上黑板写正弦定理。

2. 设计精彩的新课导入(5分钟):利用大屏幕演示一座山,先展示,后出现B、C,

再连成虚线,并闪动几下,闪动边AB、AC几下,再闪动角A的阴影几下,可测得

AC、AB的长及∠A大小。

问你知道工程技术人员是怎样计算出来的吗?

一下子,学生的注意力全被调动起来,学生一定会采用正弦定理,但很快发现

∠B、∠C不能确定,陷入困境当中。

3. 探索研究,合理猜想。

当AB=c,AC=b一定,∠A变化时,a可以认为是A的函数,a=f(A),A∈(0,∏)

比较三种情况,学生会很快找到其中规律。 -2ab的系数-1、0、1与A=0、∏/2、∏之间存在对应关系。

教师指导学生由特殊到一般,经比较分析特例,概括出余弦定理,这种促使学生主动参与知识形成过程的教学方法,既符合学生学习的认知规律,又突出了学生的主体地位。"授人以鱼",不如"授人以渔",引导学生发现问题,探究知识,建构知识,对学生

来说,既是对数学研究活动的一种体验,又是掌握一种终身受用的治学方法。

4. 证明猜想,建构新知

接下来就是水到渠成,现在余弦定理还需要进一步证明,要符合数学的严密逻辑推理,锻炼学生自己写出定理证明的已知条件和结论,请一位学生到黑板写出来,并请同学们自己进行证明。教师在课中进行指导,针对出现的问题,结合大屏幕打出的正

确过程进行讲解。

在大屏幕打出余弦定理,为了促进学生记忆,在黑板上让学生背着写出定理,也是当

堂巩固定理的方法。

5. 操作演练,巩固提高

定理的应用是本节的重点之一。我分析题目,请同学们进行解答,在难点处进行点拨。以第二题为例,在求A的过程中学生会产生分歧,一部分采用正弦定理,一部分采用余弦定理,其实两种做法都可得到正确答案,形成解法一和解法二。在这道例题中进行发散思维的训练,(在上例中,能否既不使用余弦定理,也不使用正弦定理,

求出∠A?)

启发一:a视为B 与C两点间的距离,利用B、C的坐标构造含A的等式

启发二:利用平移,用两种方法求出C’点的坐标,构造等式。使学生的思维活跃,渐入新的境界。每次启发,或是针对一般原则的提示,或是在学生出现思维盲点

处点拨,或是学生"简单一跳未摘到果子"时的及时提醒。

6. 课堂小结:

告诉学生余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理

的特例。

7. 布置作业:书面作业 3道题

作业中注重余弦定理的应用,重点培养解决问题的能力。

以上是我的一点粗浅的认识,如有不对之处,请老师评委们给与指教,我的课说完了,谢谢各位。

余弦定理教案 篇4

一、单元教学内容

运算定律P——P 

二、单元教学目标

1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。 

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点

1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排

运算定律10课时

第1课时 加法交换律和结合律

一、教学内容:

加法交换律和结合律P17——P18

二、教学目标:

1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点

重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备

多媒体课件

五、教学过程

(一)导入新授

1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方? 师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!

2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)

3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现

第一环节 探索加法交换律

1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”

学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米) 你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?

学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验

写出的等式是否符合要求。

2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。 全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。可以用符号来表示:?+☆=☆+?;

可以用文字来表示:甲数十乙数=乙数十甲数。

3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢? a+b=b+a

教师指出:这就是加法交换律。

4、初步应用:在( )里填上合适的数。

37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )

第二环节 探索加法结合律

1、课件出示教材第18页例2情境图。

师:从例2的情境图中,你获得了哪些信息?

师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式? 学生独立列式,指名汇报。 汇报预设:

方法一:先算出“第一天和第二天共骑了多少千米”: (88+104)+96=192+96 =288(千米)

方法二:先算出“第二天和第三天共骑了多少千米”: 88+(104+96)=88+200=288(千米)

把这两道算式写成一道等式:

(88+104)+96=88+(104+96)

2、算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)

小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有

什么发现。

集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢? (a+b)+c=a+(b+c)

教师指出:这就是加法结合律。

4、初步应用。

在横线上填上合适的数。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)

(三)巩固发散

1、完成教材第18页“做一做”。

学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。

2、下面各等式哪些符合加法交换律,哪些符合加法结合律?

(1)470+320=320+470

(2)a+55+45=55+45+a

(3)(27+65)+35=27+(65+35)

(4)70+80+40=70+40+80

(5)60+(a+50)=(60+a)+50 (6)b+900=900+b

(四)评价反馈

通过今天这节课的学习,你有哪些收获?

师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。

(五)板书设计

加法交换律和结合律

加法交换律加法结合律

例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)

两个数相加,交换加数的位置,和不变。

六、教学后记

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

余弦定理教案 篇5

如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA).

现将CB平移到起点为原点A,则AD = CB .

而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C ,

根据三角函数的定义知D点坐标是 (acos(π-C),asin(π-C))

即 D点坐标是(-acosC,asinC),

∴ (-acosC,asinC) = (ccosA-b,csinA)

由①得 asinA = csinC ,同理可证 asinA = bsinB ,

∴ asinA = bsinB = csinC .

由②得 acosC = b-ccosA ,平方得:

a2cos2C = b2-2bccosA + c2cos2A ,

即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A .

∴ a2 = b2 + c2-2bccosA .

同理可证 b2 = a2 + c2-2accosB ,

c2 = a2 + b2-2abcosC .

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

=casin∠ABC.

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

的直径,则∠DAC=90°,∠ABC=∠ADC。

因为AB=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因为jAC=0,

jCB=| j ||CB|cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

过A作 ,

法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根据向量的运算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知

化简得b2-a2-c2=-2accos B.

这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理.

余弦定理教案 篇6

大家好,今天我向大家说课的题目是《余弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

一、教材分析

本节知识是职业高中数学教材第五章第九节《解三角形》的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

①理解掌握余弦定理,能正确使用定理

②培养学生教形结合分析问题的能力

③培养学生严谨的推理思维和良好的审美能力。

教学重点:定理的探究及应用

教学难点:定理的探究及理解

二、学情分析

对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

三、教法分析

根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。

四、学法指导:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

五、教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成定理,大约用25分钟

第三:应用定理,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。

(二)逻辑推理,证明猜想

提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。

(三)归纳总结,简单应用

1、让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2、回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。

(四)讲解例题,巩固定理

1、审题确定条件。

2、明确求解任务。

3、确定使用公式。

4、科学求解过程。

(五)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(六)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1、用向量证明了余弦定理,体现了数形结合的数学思想。

2、两种表达。

3、两类问题。

(七)思维拓展,自主探究

利用余弦定理判断三角形形状,即余弦定理的推论。

本文来源://www.fr134.com/f/3754.html